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The barely implicit correction (BIC) removes the stringent limit on the timestep imposed by 
the sound speed in explicit methods. This is done by adding one elliptic equation which has to 
be solved implicitly. BIC is combined with the flux-corrected transport algorithm in order to 
represent sharp gradients in subsonic flows accurately. The resultant conservative algorithm 
costs about the same per timestep as a single explicit timestep calculated using an optimized 
FCT module. Several examples show the technique’s ability to solve nearly incompressible 
flows very economically. 0 1987 Academic Press, Inc. 

I. INTRODUCTION 

The solution of time-dependent compressible flow problems is complicated by 
conflicting requirements of mathematical accuracy, nonlinearity, physical conser- 
vation, and positivity. This is especially true near discontinuities where “accurate” 
high-order algorithms produce ripples while linear monotonic (i.e., positivity- 
preserving) schemes are highly diffusive. After Godunov [ 1 ] showed that a linear 
algorithm ensures positivity only if it is first order, the next logical step was to look 
at nonlinear methods to develop effectively higher order, more accurate monotonic 
schemes. The first high-order monotone algorithm (Boris [2]) was designed to 
maintain local positivity near steep gradients while keeping a high order of 
accuracy elsewhere. The major principles of the monotone high-order algorithms 
are that they maintain positivity through a procedure that uses a nonlinear com- 
bination of diffusive and antidiffusive fluxes. The flux-corrected transport (FCT) 
algorithm that we use in this paper [3,4] is made fourth order by the appropriate 
subtraction of corrected fluxes. Other monotone methods have been reviewed by 
Woodward and Collela [S] and Baer [6]. In this paper we confine our discussions 
to a barely implicit correction (BIC) to FCT. BIC is also extendable to other 
monotone methods. 

Positivity-preserving monotone FCT methods were developed to calculate shocks 
accurately. Even for subsonic flows with discontiauities, their high accuracy 
produced much better solutions than standard finite difference techniques. The early 
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FCT methods were explicit. No serious limitation arose from this explicitness in 
supersonic flows because the major features of interest in the flow move at about 
the sound speed. Using these methods for subsonic flows, however, is economical 
only if the characteristic velocities in the flow field are a reasonable fraction of the 
speed of sound [7,8] or if the fast sound waves are mathematically removed from 
the system of equations. 

The barely implicit correction described in this paper was motivated by the need 
to calculate subsonic flows accurately in which the velocities of the important flow 
structures are much lower than the speed of sound. In typical cases, we are 
interested in flow velocities from centimeters to tens of meters per second. These 
flow velocities are encountered, for example, in laminar flames and low-speed fuel 
injection in engines. Our objectives are to remove the timestep limit imposed by the 
speed of sound, retain the accuracy required to resolve the detailed features of the 
flow, and reduce the computational costs. 

The obvious way to beat the sound-speed limit on the timestep is to make the 
calculation implicit. This has been done successfully for many linear methods, such 
as the MacCormack method [9], the Beam and Warming method [lo], and the 
semi-implicit ICE method [ll-131. In addition, recent developments have been 
reported for implicit, nonlinear PPM [14] and TVD [15] methods. A major 
problem with these methods is that they are relatively expensive, even though they 
can be made relatively accurate. 

Another approach is the asymptotic methods. Examples of these are the methods 
developed by Jones and Boris [16], Rehm and Baum [17], and Paolucci [18]. In 
these methods, the only effects of compression that are allowed are the changes in 
density due to heating or cooling. Pressure fluctuations are filtered out, thus remov- 
ing the timestep limit imposed by the sound speed. However, other effects from 
sound waves are removed in this process. 

As a useful approach was given by Casulli and Greenspan [ 191. Their analysis 
indicated that it is not necessary to treat all of the terms in the gas dynamic 
equations implicitly to be able to use longer timesteps than those dictated by 
explicit stability limits. Only those explicit terms which force this limit need to be 
treated implicitly. This approach results in a single elliptic equation for pressure. 
Because of the choice of terms, the algorithm produced is stable. Note that the ICE 
method also results in a single elliptic equation. However, the elliptic equation in 
ICE is different, and does not completely eliminate the sound-speed restriction. 

The conservative algorithm presented in this paper has two steps. The first step is 
explicit. It is performed at a large timestep governed by a CFL condition on the 
fluid velocity. This step should be done with an accurate nonlinear monotone 
method, and we have used FCT in the examples given. The second step is an 
implicit correction step requiring the solution of one elliptic equation for the 
pressure correction. The term barely implicit correction emphasizes our use of the 
idea of Casulli and Greenspan, that only certain terms must be treated implicitly. 

The total cost per timestep of BIC-FCT is about the same as for a full explicit 
FCT step. Thus the cost of a complete calculation is one or two orders of 
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magnitude below that required if a very slow flow were treated explicitly. Since only 
one elliptic equation is solved, the method is considerably faster than many implicit 
methods commonly used. In addition, using a nonlinear monotone method for the 
explicit step ensurcs high accuracy. 

II. METHOD OF SOI.CTION 

Lkricution of‘ the Hare1.y Implicit Correction 

We are solving the compressible gas dynamics conservation equations for density 
y. momentum density pv, and total internal energy, E, 

(2) 

where the total energy density E is 

The equation of state relating pressure and internal energy is 

P=(y- I)E. (5) 

In their recent paper, Casulli and Greenspan [19] showed that it is not necessary 
to treat every term in a linite-difference algorithm implicitly to avoid the timestep 
constraint imposed by the Courant condition. Further, they showed that only the 
pressure in Eq. (2) and the velocity in Eq. (3) must be treated implicitly. Their 
paper provides the starting concepts for the work WC present. In addition, WC have 
extended their analysis to include an implicitness parameter, VI, that can bc used to 
vary the degree of implicitness of the algorithm. In general, we can have 0.5 do 6 1. 
where the implicit terms are centered in time for (9 = 0.5. For (1) < 0.5, the method is 
found to be unstable for sufficiently large timesteps. 

There are two stages to the algorithm. One stage is an explicit predictor that 
determines fi and the provisional value t, 
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The tilde denotes predictor values at the new time, and the superscripts o and n are 
used to denote the old time and new time, respectively. So far only time has been 
differenced, not space. The implicit forms of Eqs. (2) and (3) are 

pnvn - pOvo 
At 

= -v*p”v”v”-v[wP”+(1 -w)PO], 

En-E” 
-= -V*(E”+P”)[ov”+(l-w)P], 

At 

where w is the implicitness parameter discussed above. When o = 1, the algorithm 
is completely implicit and reverts to the original equations analyzed by Casulli and 
Greenspan. 

We can reduce this implicit system to only one equation by eliminating v” 
between Eq. (8) and (9). To do this, we first define the change in pressure, 6P, as 

6P = w(P” -PO). (10) 

Then the correction equation for momentum can be obtained in terms of 6P by 
subtracting Eq. (7) from Eq. (S), 

p”v” -p 

At 
= -Vw(P” - P”) = -VdP. 

We obtain the new velocity by rearranging Eq. (11) and letting p” = p” because 
the density is treated explicitly. Then 

v”= -%GP+i. 
P 

(12) 

We obtain a correction equation for energy using the equation of state with y con- 
stant, Eq. (4), 

&n = 6P 
(Y-l)w+s”’ (13) 

where the w factor appears from the definition of 6P. We find 6P by substituting 
Eqs. (12) and (13) into Eq. (9), 

pt’ - floe2 + 6P 
2At (y-l)wAt=wAtv’ 

-wV.(E”+P”)f 

-(l-w)V~(E”+P”)v”. (14) 
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Note that the kinetic energy change is included explicitly. For convenience. we 
define the quantity ,?, 

- 
%I+ -v~(E”+P”)[o~+(l-w)v”]. (i.5) 

This allows us to rewrite Eq. (14), 

CiP 
(;a - 1) (O/ff - u)ArV- 

67’ _ pvo2 

2At ’ 
(16) 

which provides us with an elliptic equation for 6P. The right-hand side of Eq. (16) 
is evaluated explicitly using Eq. (15). After the elliptic equation is solved for 6P, 
momentum and energy are corrected by Eqs. (11) and (13). Note that we started 
with two equations with implicit terms, and now we have reduced it to one 
equation, Eq. ( 16). 
I The barely implicit correction is carried out in three stages. In the first: Eqs. (6) 

(7) and (15) are integrated with any one-step explicit method. The pressure corrcc- 
tion equation, Eq. (16) is solved by an elliptic solver in the second stage. The last 
stage requires the use of Eqs. (11) and (13) to obtain the final values of momentum 
and energy at the new timestep. 

Solurion Procrd4rr 

The derivation given above does not involve any specific choice of method for 
differencing the spatial dcrivativcs. The only restriction so far is that the spatial 
derivatives must be evaluated at the appropriate time levels indicated by the 
superscripts. This allows great flexibility in the choice of the differencing scheme for 
these terms. Thus we can integrate the explicit predictor equations, Eqs. (6) (7) 
and (15) with FCT. This gives us the benefits of using a high-order monotone 
method. We have given the name BIC-FCT to this particular combination of BIG 
and FCT. Tests, such as those presented below, indicate that it has the same 
accuracy and flexibility as FCT. 

At each timestep. the solution procedure we have implemented is divided into the 
three states: 

(1) Explicit predictor stage. The density and momentum are advanced 
explicitly as specified by Eqs. (6) and (7) using FCT. This produces the inter- 
mediate quantities, p and j%. The V is found from jG/fi. Then i is used to obtain E 
given by Eq. (15). FCT is also used to obtain E. 

(2) Solution of Eq. (16) for 6P. In one dimension, the solution to the dif- 
ference form of Eq. (16) requires the solution of a system of linear equations by a 
tridiagonal matrix solver. In two dimensions, the solution requires an elliptic solver. 
For the two-dimensional calculations shown below, we used a multigrid method 
[20]. A substantial part of the computer time required in this stage is in setting up 
the coefficients for an elliptic equation solver. 
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(3). Momentum and energy corrections. These corrections are obtained from 
the pressure change 6P using Eqs. (11) and (13), respectively. These corrected 
values and the density obtained explicitly in the first stage are the starting con- 
ditions at the new timestep. 

These three stages are carried out at every timestep. The derivatives involving 
pressure in the pressure difference equation, Eq. (16), are approximated by central 
differences. All physical quantities are calculated at cell centers, and those values 
needed at cell interfaces are obtained by averaging. 

This technique can be implemented in one, two, or three dimensions. In one and 
two dimensions, several different geometries are possible. For example, we have 
implemented two-dimensional planar and axisymmetric geometries, and one-dimen- 
sional Cartesian, cylindrical, and spherical. Any boundary conditions that are com- 
monly used with the standard FCT modules can be used with this algorithm [7]. 

Boundary conditions for the elliptic pressure correction equation are needed. 
Symmetry or outflow boundaries can be simulated by a Neumann condition on the 
pressure correction. At an inflow, the pressure is related to the internal energy by 
the equation of state. Thus the boundary condition for the pressure correction can 
be derived from the boundary condition on energy. If the internal energy is fixed at 
a boundary, the pressure there is a constant and thus 6P is zero. 

III. TESTS OF THE METHOD 

Advection of a One-Dimensional Contact Discontinuity 

The problem we consider first is the flow of air through a duct in one dimension. 
The duct is initially filled with air at standard temperature and pressure. Then cold 
air with twice the density flows into the duct. There is a contact discontinuity at the 
location where the cold, dense air and normal air meet. In the absence of diffusive 
processes, the contact discontinuity should move at the velocity of the incoming air. 
This numerical test shows the ability of BIC-FCT to propagate a contact discon- 
tinuity with the same accuracy as FCT. 

The computational domain was divided into 200 evenly spaced cells of 1 cm. 
Initially, the discontinuity was 0.1 m from the inlet. The flow velocity of air in the 
duct was 10 m/s. The inlet conditions corresponding to the cold air are held fixed 
throughout the calculation. 

The timestep used in this calculation is 0.5 ms, which is the time required for the 
fluid to cross half a cell. This should be compared to the Courant limit of 24 ps. 
Typical explicit methods are forced to employ a timestep of less than half of the 
Courant limit to control the growth of perturbations in pressure and velocity. In 
this example, a factor of forty to fifty is gained over the explicit timestep. 

Figure 1 shows the density profiles at intervals of 50 steps. The discontinuity, 
initially across one cell, spreads to three or four cells as it moves across the system. 
Most important, however, is that the discontinuity spreads no further throughout 
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FIG. 1. Density profiles of propagating contact discontinuity at 50 step intervals. 

1.2 

1.0 

.6 

-.6 

-.6 

-1.0 

-1.2 0’ 

///“/,,“I”‘,,,“‘/ “’ ‘I’,,/“,, 

1111,~Il,/,/,‘,,,,,il,,,//,,,,/1,11 

.5 1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

CYCLES 

FIG. 2. Effect of w on the damping of a sound wave. 



8 PATNAIK ET AL. 

the course of the solution and there are no ripples in the solutions. Both of these 
features are in the underlying explicit FCT algorithm. The results presented in the 
figure were obtained with w = 1. The influence of sound waves in this problem are 
negligible, so that any stable value of w gives the same result. 

Sound Wave Damping 

Sound waves, especially high-frequency sound waves, are attenuated by most 
finite-difference methods. Implicit methods, however, tend to damp all frequencies, 
with the lower frequencies damped least. The problem we now present tests the 
sound-wave damping in BIC-FCT. 

We consider a closed, one-dimensional pipe 1 m long in which the fluid velocity 
was initialized with a sinusoidal variation. The maximum amplitude of the variation 
was 1 m/s at the center of the pipe. Effectively, the initial conditions correspond to a 
sound wave in the pipe with a wavelength of 2 m. 

Each curve in Fig. 2 shows the fluid velocity at the center of the pipe as a 
function of the number of cycles for a different value of CD. The damping is greatest 
when w = 1, which is when the method is completely implicit. The damping 
decreases as w is reduced, and it becomes negligible when o = 0.5. Any further 
reduction in w leads to instability of the numerical method. We conclude that the 
amount of damping is a strong function of implicitness parameter. The results 
shown in Fig. 2 were for a sound wave with a cell size of 2.5 cm using a timestep of 
0.1 ms. 

The dispersion relation, obtained directly from the calculations, is shown in 
Fig. 3a for CFL = 0.5. The CFL number is defined as 

CFL = 
sound speed x time step 

cell size 

These calculations were made by varying the timestep as well as the number of cells 
in the 1 m pipe. The product of the wave number, k, and the cell size Ax is inversely 
related to the accuracy of representation of the wave. The number of cells per 
wavelength is given by 

iV=&. 

On the vertical axis, we show od and ot, the observed and theoretical frequencies 
of the wave. A totally dispersion free algorithm, in which od= wt, would yield the 
45” line shown. Curves for different values of the implicitness parameter are presen- 
ted. For comparison purposes, the results for the explicit, predictor-corrector 
JPBFCT method [4] are included. JPBFCT requires two applications of the FCT 
algorithm at each timestep. This two-step process makes JPBFCT second order in 
time. 
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Figure 3b indicates the change in amplitude of the wave in one period. The 
amplification is always less than unity, indicating that the wave is damped. If the 
amplification were greater than unity, the calculation would be unstable. As expec- 
ted, damping increases when the method is more implicit. Poorly resolved 
wavelengths are damped, even by the fully explicit, time-centered, JPBFCT method. 
It should be noted that BIC-FCT with o = 0.55 performs nearly as well as the 
explicit JBPFCT. Values of o nearer 0.5 brings results of the two methods even 
closer. 

Figures 4a, b, and 5a, b give the dispersion relation and damping for CFL = 2 
and CFL = 10, respectively. Representation of the sound wave deteriorates more 
rapidly as resolution is lost for these CFLs. Curves for CFL = 10 are shorter than 
those for lower CFL because the timestep becomes too large to resolve the 
oscillatory nature of the wave. 

This example points out the need for caution when attempting to resolve sound 
waves at high CFLs. Poorly resolved wavelengths are strongly damped and cannot 
be adequately represented. However, if only long wavelengths are of interest, 
BIC-FCT can provide a substantial gain over an explicit method. 

A Two-Dimensional Problem 

When BIC-FCT is applied in two dimensions, the same basic three-step 
procedure is used. In addition, we use time splitting in the two spatial dimensions 
to implement the explicit FCT predictor step. However, for the method to work, 
the elliptic pressure change equation must be solved in two dimensions. 

The solution of the elliptic pressure change equation is a substantial part of the 
computional effort at each timestep. In one dimension, the finite-difference form of 
the pressure difference equation can be solved efficiently in O(N) operations, where 
N is the number of grid points, using standard tridiagonal methods (e.g., see 
Roache [21]). In two dimensions, it is important to have an efficient elliptic solver, 
and preferably one that is not limited to specitic types of problems with specific 
boundary conditions. In the calculation presented below we use a multigrid 
method, MGRID [20], which is very fast and requires O(Nlog N) operations. This 
method is suitable for the parallel processing in pipelined, parallel, and vector com- 
puters. It is straightforward to use any other suitable elliptic solver. 

The two-dimensional Cartesian test problem was selected to demonstrate the 
ability of BIC-FCT to treat nearly incompressible swirling flows. Calculating this 
type of flow is difficult for most Eulerian methods, and thus it provides a very 
stringent test of our method. A potential vortex with a central core was used as an 
initial condition in a square 10 m x 10 m region. The initial conditions correspond 
to the analytic solution of a line vortex with diffusion which is of the form [22] 

V tangential = 
; [l -,-+43 
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where c and v are constants. The flow very rapidly adjusts to the presence of the 
walls, but this does not affect the flow close to the vortex center. In this test, a 
stretched 40 x 40 grid was used with the smallest cells 10 cm in size placed at the 
center of the vortex. The maximum velocity, at the start of the calculation, was 
30 m/s. A conservative timestep of 1 ms was used. This should be contrasted to the 
60 to 120 ,DS timesteps required for stability in a fully explicit method. In this nearly 
steady-state problem, the effects of pressure fluctuations are expected to be 
negligible. Therefore, we could use cr) = 1, the fully implicit method. 

For flow visualization purposes, the lower half of the fluid has been marked and 
appears as the dark area in Fig. 6. In the absence of diffusion processes, either 
physical or numerical, this interface remains sharp as the fluid rotates at a constant 
velocity. Figures 7 and 8 show the position of the interface after 50 and 200 
timesteps, respectively. The interface between the marked and unmarked fluid is no 
longer sharp, due to numerical diffusion. The interface remains fairly sharp outside 
the core region. 

The velocity decay is given in a more quantitative manner by the scatter plots 
shown in the next set of figures. Tangential and radial components of velocity are 
plotted as a function of distance from the vortex center. Crosses denote the velocity 
at each grid point actually obtained from the program and the solid line provides a 
least squares lit of the data to the form of the analytic solution of the vortex with 
diffusion [22]. The initial condition is shown in Figs. 9a and b. Figures lOa, b, and 
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TABLE I 

Timings4 per Step of BIC-FCT and JPBFCT 

20x20 40x40 80x80 

BIC-FCT 
Explicit 6.8 ms 17.0 ms 54.1 ms 
Elliptic 3.8 8.4 22.5 
Other 2.7 5.9 17.1 
Total 13.3 31.3 93.7 
Per point 33.3 ps 19.6 ps 14.6 /is 

JPBFCT 13.6 ms 33.9 ms 108.1 ms 
Per point 34.0 ps 21.2 /.ls 16.9 ps 

4 On CRAY XMP-12. 

lla, b show the velocity after 50 and 200 timesteps, respectively. The peak tangen- 
tial velocity decreases due to numerical diffusion. However, the effective diffusion 
coefficient is not a constant either in space or time which leads to an imperfect lit of 
the data to the analytic solution. Scatter in the tangential velocity at the same 
location is due to the nonuniform retardation caused by varying amounts of 
numerical diffusion. Since the flow is essentially incompressible, nonzero radial 
velocities are generated. 

We now examine the time it takes to do one computational timestep. Table I 
shows a timing comparison between BIC-FCT and the standard module, JPBFCT, 
very similar to that described by Boris [4]. In fact, the explicit FCT predictor in 
BIC-FCT is similar to the corrector step of JPBFCT. The table shows that the 
computational time required per timestep compares extremely favorable to that for 
the explicit method, especially at the larger grid sizes. 

IV. SUMMARY AND DISCUSSION 

In this paper we have described the barely implicit correction method (BIC) for 
calculating subsonic flows. As pointed out by Casulli and Greenspan, only the 
pressure and velocity terms in the momentum and energy equations, respectively, 
have to be treated implicitly. This is sufficient to remove the sound-speed limit on 
the timestep. We then manipulated the equations to yield a single implicit equation, 
which is solved for a correction to an explicit predictor step. BIC can be used with 
any spatial differencing scheme. BIC-FCT provides the accuracy of the high-order 
monotone flux-corrected transport method but allows the large timesteps possible 
with an implicit method. 

A number of test problems showed that BIC-FCT maintains the desirable high- 
order monotone characteristics of the explicit FCT algorithm. First, we showed that 
it could propagate a contact discontinuity as well as the two-step JPBFCT. We also 
presented a two-dimensional example of a swirling flow. 
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The implicitness parameter, w, plays an important role in BIC-FCT wbe~eve~ 
sound waves and pressure oscillations are important in the solution. Dampin 
negligible for long wavelengths and timesteps when o = 0.5. When sound waves 
not important, o can be set to unity. 

The major gain is that the timestep is no longer restricted by the sound spee 
This improvement is achieved at little or no additional cost per timestep. The cost 
of solving the elliptic equation is recovered by the elimination of the half-step 
calculations in explicit FCT. 

In two-dimensional problems, an efticient method of solution of the elhptic 
pressure equation is essential. The multigrid technique MGRID used here is among 
the fastest. However, the application of this technique to even modestly complicates 
geometries is not straightforward. Unstructured multigrid methods [23] s 
provide the necessary flexibility. 

Equations (6), (8), (9), and (16) are in conservative form. FCT has been shown 
to be conservative and Eq. (16), the pressure correction equation, is difference 
conservative manner. Thus BIC-FCT is a conservative scheme. Since the pressure 
correction only appears as a gradient in the velocity correction, vorticity ge~era~~~~ 
and transport are unchanged by BIC. Thus vorticity also stays a local, convecte 
quantity. 

BIC-FCT is not restricted to ideal gases. The equation of state can be generalized 
to the form 

where dP@E can vary in time and space. However, incompressible flows cannot be 
handled by BIC-FCT in its current form because FCT is not a divergence-free 
algorithm. 

In summary, BIC-FCT has opened up the possibility of doing accurate, very 
slow flow calculations in which compression is important. Future computational 
directions include extensions to finite elements [24] and to addition of other 
physical processes such as gravity, viscosity, and chemical reactions to simulate 
premixed flames, diffusion flames, and turbulent jets. 
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